9561 measured reflections

 $R_{\rm int} = 0.031$

2320 independent reflections

1583 reflections with $I > 2\sigma(I)$

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2-Hydroxy-5-{[(E)-4-methoxybenzylidene]azaniumyl}benzoate

M. Nawaz Tahir,^a* Muhammad Ilyas Tariq,^b Shahbaz Ahmad^b and Muhammad Sarfraz^b

^aDepartment of Physics, University of Sargodha, Sargodha, Pakistan, and ^bDepartment of Chemistry, University of Sargodha, Sargodha, Pakistan Correspondence e-mail: dmntahir_uos@yahoo.com

Received 2 September 2010; accepted 8 September 2010

Key indicators: single-crystal X-ray study: T = 296 K: mean $\sigma(C-C) = 0.003$ Å: R factor = 0.050; wR factor = 0.143; data-to-parameter ratio = 12.7.

In the title zwitterion, $C_{15}H_{13}NO_4$, obtained from the condensation of 5-aminosalicylic acid and 4-methoxybenzaldehyde, the 4-hydoxyanilinic group of the 5-aminosalicylic acid moiety and the 4-methoxybenzaldehyde moiety are twisted with respect to one another, making a dihedral angle of 10.37 (7)°. The carboxylate group makes a dihedral angle of $5.7 (2)^{\circ}$ with the parent 4-hydoxyanilinic group. An intramolecular $O - H \cdots O$ hydrogen bond forms an S(6) ring motif. In the crystal, intermolecular $C-H\cdots O$ and $N-H\cdots O$ hydrogen bonds with $R_2^1(7)$ ring motifs link the molecules into infinite chains extending along the c axis. The occurence of slipped π - π stacking between symmetry-related aromatic rings reinforces the packing.

Related literature

For the related structures, see: Ashiq et al. (2010); Bryan et al. (1978). For graph-set notation, see: Bernstein et al. (1995). For π - π stacking, see: Janiak (2000).

Experimental

Crystal data

C15H13NO4 $M_{\rm r} = 271.26$ Monoclinic, P21/c a = 13.4369 (12) Å b = 8.5619 (8) Å c = 12.6653 (11) Å $\beta = 118.004 \ (3)^{\circ}$

V = 1286.5 (2) Å³ Z = 4Mo $K\alpha$ radiation $\mu = 0.10 \text{ mm}^{-1}$ T = 296 K $0.26 \times 0.20 \times 0.18 \; \mathrm{mm}$

Data collection

Bruker Kappa APEXII CCD

```
diffractometer
Absorption correction: multi-scan
  (SADABS; Bruker, 2005)
  T_{\rm min} = 0.982, T_{\rm max} = 0.987
```

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.050$	182 parameters
$wR(F^2) = 0.143$	H-atom parameters constrained
S = 1.02	$\Delta \rho_{\rm max} = 0.28 \text{ e } \text{\AA}^{-3}$
2320 reflections	$\Delta \rho_{\rm min} = -0.18 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	$D-{\rm H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots \mathbf{A}$
O3−H3···O1	0.90	1.62	2.4816 (19)	159
$N1 - H1 \cdots O2^{i}$	0.86	1.90	2.7408 (19)	166
C8−H8···O1 ⁱⁱ	0.93	2.47	3.179 (2)	133
$C14 - H14 \cdots O2^{i}$	0.93	2.30	3.183 (2)	159
$C15 - H15A \cdots O3^{iii}$	0.96	2.56	3.393 (3)	145

Symmetry codes: (i) $x, -y + \frac{1}{2}, z - \frac{1}{2}$ (ii) $-x, y - \frac{1}{2}, -z + \frac{1}{2}$ (iii) x + 1, y - 1, z.

Table 2

 π - π stacking interactions (Å, °).

Cg1 and Cg2 are the centroids of the C2-C7 and C9-C14 rings, respectively.

$Cg \cdots Cg$	centroid-centroid distance	mean interplanar distance ^a	slippage angle ^b	
$Cg1 \cdots Cg1^i$	3.7848 (13)	3.428 (1)	25.1	
$Cg1 \cdots Cg2^{ii}$	3.8456 (13)	3.567 (1)	22.0	

Symmetry codes: (i) -x, 1 - y, -z, (ii) -x, -y, -z. Notes: (a) distance from one plane to the neighbouring centroid; (b) angle subtended by the intercentroid vector to the plane normal. For details, see: Janiak (2000).

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON.

The authors acknowledge the provision of funds for the purchase of the diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha, Pakistan.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2599).

References

- Ashiq, M. I., Hussain, I., Dixon, S., Light, M. E. & Kilburn, J. D. (2010). Acta Cryst. C66, 0455-0458.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
- Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Bryan, R. F., Forcier, P. & Miller, R. W. (1978). J. Chem. Soc. Perkin Trans. 2, pp. 368–372.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.

Janiak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885–3896. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supplementary materials

Acta Cryst. (2010). E66, o2553-o2554 [doi:10.1107/S1600536810036172]

2-Hydroxy-5-{[(E)-4-methoxybenzylidene]azaniumyl}benzoate

M. N. Tahir, M. I. Tariq, S. Ahmad and M. Sarfraz

Comment

The title compound (I) has been synthesized as a potential ligand which could be used with various metals.

The title compound (I) is a Zwitterion. In (I), the group A (C2—C7/N1/O3) of 5-aminosalicylic acid moiety and the 4-methoxybenzaldehyde moiety B (C8—C15/O4) are planar with r. m. s. deviations of 0.0076 and 0.0255 Å, respectively. The dihedral angle between A/B is 10.37 (7)°. The carboxylate group C (O1/C1/O2) is oriented at a dihedral angle of 5.73 (24)° with the parent group A (Fig. 1). The title molecule is closely related to p-[(p-methoxybenzylidene)amino]phenol (Bryan *et al.*, 1978) and *N*-benzyl-*N'*-{6- [(4-carboxylatobenzyl)aminocarbonyl]-2-pyridylmethyl}guanidinium (Ashiq *et al.*, 2010)

The values of the C=O bond [1.241 (2), 1.269 (3) Å] are in agreement with the value, 1.235 (3)–1.261 (3) Å, reported for the *N*-benzyl-*N'*-{6- [(4-carboxylatobenzyl)aminocarbonyl]-2-pyridylmethyl}guanidinium (Ashiq *et al.*, 2010). In the title compound S(6) ring motifs (Bernstein *et al.*, 1995), is formed due to intramolecular H-bondings of O—H···O type (Table 1, Fig. 2). There exist $R_2^{-1}(7)$ ring motif due to intermolecular H-bondings of C—H···O and N—H···O types linking the molecules to form infinite one dimensional chains extending along the crystallographic *c*-axis.

The occurence of slippest π - π stacking (Janiak, 2000) between symmetry related aromatic rings play an important role in stabilizing the packing.

Experimental

Equimolar quantities of 5-aminosalicylic acid and 4-anisaldehyde were refluxed in methanol for 30 min resulting in clear brown solution. The solution was kept at room temperature which affoarded light brown prisms after 72 h.

Refinement

All H atoms attached to C atoms and N atom were fixed geometrically and treated as riding with C—H = 0.95 Å (methyl) or 0.93 Å (aromatic) and N—H = 0.86 Å with $U_{iso}(H) = 1.2U_{eq}(C_{aromatic} \text{ or } N)$ or $U_{iso}(H) = 1.5U_{eq}(C_{methyl})$. H atoms of the hydroxyl group was located in difference Fourier maps and included in the subsequent refinement using restraints (O—H = 0.85 (1) Å) with $U_{iso}(H) = 1.5U_{eq}(O)$. In the last cycles of refinement this hydrogen was treated as riding on its parent O atom.

Figures

Fig. 1. View of the title compound with the atom numbering scheme. The thermal ellipsoids are drawn at the 50% probability level. H-atoms are shown by small circles of arbitrary radii.

Fig. 2. Partial packing view showing the hydrogen bonding pattern. Hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bondngs have been omitted for clarity. [Symmetry codes: (i) x, -y+1/2, z-1/2; (ii) -x, y-1/2, -z+1/2; (iii) x+1, y-1, z].

2-Hydroxy-5-{[(E)-4-methoxybenzylidene]azaniumyl}benzoate

Crystal data

C₁₅H₁₃NO₄ F(000) = 568 $M_r = 271.26$ $D_{\rm x} = 1.401 {\rm Mg m}^{-3}$ Monoclinic, $P2_1/c$ Mo *K* α radiation, $\lambda = 0.71073$ Å Hall symbol: -P 2ybc Cell parameters from 1583 reflections $\theta = 2.9 - 25.3^{\circ}$ *a* = 13.4369 (12) Å *b* = 8.5619 (8) Å $\mu = 0.10 \text{ mm}^{-1}$ T = 296 K*c* = 12.6653 (11) Å $\beta = 118.004 (3)^{\circ}$ Prism, light brown $V = 1286.5 (2) \text{ Å}^3$ $0.26 \times 0.20 \times 0.18 \text{ mm}$ Z = 4

Data collection

Bruker Kappa APEXII CCD diffractometer	2320 independent reflections
Radiation source: fine-focus sealed tube	1583 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.031$
Detector resolution: 8.10 pixels mm ⁻¹	$\theta_{\text{max}} = 25.3^{\circ}, \ \theta_{\text{min}} = 2.9^{\circ}$
ω scans	$h = -15 \rightarrow 16$
Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2005)	$k = -10 \rightarrow 10$
$T_{\min} = 0.982, \ T_{\max} = 0.987$	$l = -15 \rightarrow 10$
9561 measured reflections	

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map

$R[F^2 > 2\sigma(F^2)] = 0.050$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.143$	H-atom parameters constrained
<i>S</i> = 1.02	$w = 1/[\sigma^2(F_o^2) + (0.0831P)^2 + 0.1187P]$ where $P = (F_o^2 + 2F_c^2)/3$
2320 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
182 parameters	$\Delta \rho_{max} = 0.28 \text{ e} \text{ Å}^{-3}$
0 restraints	$\Delta \rho_{min} = -0.18 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional	atomic	coordinates	and is	sotropic	c or ea	auivalent	isotrop	ic dis	nlacement	parameters +	$(Å^2$)
1 / 00011011011	cironiic	coontainates	<i>cirici i</i> .	sonopic		luivaient	1501100	ie ans	pracement	parameters,	(**	/

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
01	-0.19046 (12)	0.62390 (19)	0.15961 (12)	0.0667 (5)
O2	-0.03306 (11)	0.49725 (16)	0.27753 (10)	0.0510 (4)
03	-0.29868 (11)	0.56256 (18)	-0.05677 (12)	0.0613 (5)
Н3	-0.2728	0.6015	0.0176	0.092*
O4	0.50744 (13)	-0.1897 (2)	0.09919 (15)	0.0857 (6)
N1	0.04782 (11)	0.17725 (17)	-0.01733 (13)	0.0405 (4)
H1	0.0329	0.1255	-0.0813	0.049*
C1	-0.11320 (15)	0.5260 (2)	0.17761 (15)	0.0406 (5)
C2	-0.11993 (13)	0.4447 (2)	0.06936 (14)	0.0353 (4)
C3	-0.21322 (15)	0.4691 (2)	-0.04323 (16)	0.0437 (5)
C4	-0.21754 (16)	0.3965 (3)	-0.14312 (17)	0.0548 (6)
H4	-0.2793	0.4128	-0.2178	0.066*
C5	-0.13155 (15)	0.3009 (2)	-0.13273 (16)	0.0507 (5)
Н5	-0.1350	0.2530	-0.2002	0.061*
C6	-0.03929 (14)	0.2756 (2)	-0.02139 (15)	0.0382 (4)
C7	-0.03399 (13)	0.3462 (2)	0.07921 (15)	0.0371 (4)
H7	0.0273	0.3276	0.1537	0.044*
C8	0.14683 (14)	0.1574 (2)	0.07203 (16)	0.0421 (5)
H8	0.1627	0.2105	0.1423	0.051*
C9	0.23438 (14)	0.0614 (2)	0.07311 (16)	0.0413 (5)
C10	0.33683 (16)	0.0561 (3)	0.17828 (17)	0.0548 (6)
H10	0.3447	0.1116	0.2449	0.066*
C11	0.42584 (16)	-0.0289 (3)	0.18534 (18)	0.0633 (7)
H11	0.4934	-0.0315	0.2562	0.076*

supplementary materials

C12	0.41467 (16)	-0.1115 (3)	0.08600 (18)	0.0547 (6)
C13	0.31336 (17)	-0.1093 (3)	-0.01877 (18)	0.0541 (5)
H13	0.3056	-0.1665	-0.0846	0.065*
C14	0.22442 (16)	-0.0231 (2)	-0.02569 (17)	0.0476 (5)
H14	0.1570	-0.0209	-0.0967	0.057*
C15	0.5007 (2)	-0.2741 (4)	-0.0010 (3)	0.1025 (10)
H15A	0.5716	-0.3243	0.0206	0.154*
H15B	0.4836	-0.2032	-0.0660	0.154*
H15C	0.4424	-0.3515	-0.0250	0.154*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0623 (9)	0.0904 (12)	0.0448 (8)	0.0283 (9)	0.0230 (7)	-0.0037 (8)
O2	0.0533 (8)	0.0604 (9)	0.0315 (7)	0.0028 (7)	0.0135 (6)	0.0023 (6)
O3	0.0447 (8)	0.0827 (11)	0.0461 (8)	0.0220 (7)	0.0127 (7)	-0.0035 (7)
O4	0.0628 (10)	0.1237 (15)	0.0748 (11)	0.0473 (10)	0.0358 (9)	0.0216 (11)
N1	0.0403 (8)	0.0448 (9)	0.0360 (8)	0.0020 (7)	0.0176 (7)	-0.0029 (7)
C1	0.0401 (10)	0.0465 (11)	0.0365 (10)	-0.0018 (9)	0.0189 (9)	0.0033 (8)
C2	0.0337 (9)	0.0390 (10)	0.0332 (9)	-0.0022 (8)	0.0157 (8)	0.0026 (8)
C3	0.0361 (9)	0.0522 (12)	0.0392 (10)	0.0055 (9)	0.0147 (8)	0.0013 (9)
C4	0.0436 (11)	0.0728 (14)	0.0321 (10)	0.0118 (11)	0.0046 (9)	-0.0036 (10)
C5	0.0472 (11)	0.0620 (13)	0.0345 (10)	0.0066 (10)	0.0120 (9)	-0.0085 (9)
C6	0.0360 (9)	0.0402 (10)	0.0388 (10)	0.0019 (8)	0.0177 (8)	0.0009 (8)
C7	0.0320 (9)	0.0417 (10)	0.0332 (9)	-0.0005 (8)	0.0118 (8)	0.0050 (8)
C8	0.0408 (10)	0.0478 (11)	0.0362 (10)	-0.0014 (9)	0.0168 (8)	-0.0032 (8)
C9	0.0369 (10)	0.0465 (11)	0.0385 (10)	0.0012 (8)	0.0161 (8)	0.0009 (8)
C10	0.0445 (11)	0.0755 (15)	0.0372 (11)	0.0052 (10)	0.0131 (9)	-0.0055 (10)
C11	0.0399 (11)	0.0946 (18)	0.0445 (12)	0.0129 (11)	0.0108 (10)	0.0063 (12)
C12	0.0457 (11)	0.0698 (14)	0.0526 (13)	0.0199 (11)	0.0264 (10)	0.0174 (11)
C13	0.0569 (12)	0.0628 (13)	0.0435 (11)	0.0120 (11)	0.0243 (10)	0.0011 (10)
C14	0.0393 (10)	0.0557 (12)	0.0399 (10)	0.0071 (9)	0.0120 (9)	-0.0008 (9)
C15	0.103 (2)	0.123 (2)	0.107 (2)	0.0604 (19)	0.0700 (18)	0.0201 (19)

Geometric parameters (Å, °)

O1—C1	1.269 (2)	C6—C7	1.381 (2)
O2—C1	1.242 (2)	С7—Н7	0.9300
O3—C3	1.343 (2)	C8—C9	1.430 (2)
O3—H3	0.9015	С8—Н8	0.9300
O4—C12	1.354 (2)	C9—C10	1.396 (2)
O4—C15	1.426 (3)	C9—C14	1.396 (3)
N1—C8	1.291 (2)	C10—C11	1.367 (3)
N1—C6	1.423 (2)	C10—H10	0.9300
N1—H1	0.8600	C11—C12	1.389 (3)
C1—C2	1.502 (2)	C11—H11	0.9300
C2—C7	1.388 (2)	C12—C13	1.385 (3)
C2—C3	1.404 (2)	C13—C14	1.372 (3)
C3—C4	1.386 (3)	C13—H13	0.9300

C4—C5	1.371 (3)	C14—H14	0.9300
C4—H4	0.9300	C15—H15A	0.9600
C5—C6	1.390 (2)	C15—H15B	0.9600
С5—Н5	0.9300	C15—H15C	0.9600
С3—О3—Н3	101.5	N1—C8—H8	117.0
C12—O4—C15	118.07 (18)	С9—С8—Н8	117.0
C8—N1—C6	126.96 (16)	C10—C9—C14	118.36 (17)
C8—N1—H1	116.5	C10—C9—C8	117.77 (17)
C6—N1—H1	116.5	C14—C9—C8	123.85 (16)
O2—C1—O1	123.99 (17)	C11—C10—C9	121.33 (19)
O2—C1—C2	119.34 (16)	C11—C10—H10	119.3
O1—C1—C2	116.65 (15)	С9—С10—Н10	119.3
C7—C2—C3	119.37 (16)	C10-C11-C12	119.54 (18)
C7—C2—C1	120.59 (15)	C10-C11-H11	120.2
C3—C2—C1	120.04 (15)	C12—C11—H11	120.2
O3—C3—C4	118.93 (16)	O4—C12—C13	124.0 (2)
O3—C3—C2	121.38 (16)	O4—C12—C11	115.99 (18)
C4—C3—C2	119.68 (16)	C13—C12—C11	120.05 (18)
C5—C4—C3	120.52 (17)	C14—C13—C12	120.22 (19)
С5—С4—Н4	119.7	C14—C13—H13	119.9
С3—С4—Н4	119.7	С12—С13—Н13	119.9
C4—C5—C6	120.05 (17)	C13—C14—C9	120.49 (17)
С4—С5—Н5	120.0	C13-C14-H14	119.8
С6—С5—Н5	120.0	С9—С14—Н14	119.8
C7—C6—C5	120.18 (16)	O4-C15-H15A	109.5
C7—C6—N1	122.70 (15)	O4—C15—H15B	109.5
C5—C6—N1	117.12 (16)	H15A—C15—H15B	109.5
C6—C7—C2	120.18 (15)	O4—C15—H15C	109.5
С6—С7—Н7	119.9	H15A—C15—H15C	109.5
С2—С7—Н7	119.9	H15B—C15—H15C	109.5
N1—C8—C9	126.07 (17)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H…A	$D \cdots A$	$D\!\!-\!\!\mathrm{H}^{\ldots}\!\!\cdot\!\!\cdot$
O3—H3…O1	0.90	1.62	2.4816 (19)	159
N1—H1···O2 ⁱ	0.86	1.90	2.7408 (19)	166
C8—H8···O1 ⁱⁱ	0.93	2.47	3.179 (2)	133
C14—H14···O2 ⁱ	0.93	2.30	3.183 (2)	159
C15—H15A···O3 ⁱⁱⁱ	0.96	2.56	3.393 (3)	145

Symmetry codes: (i) *x*, -*y*+1/2, *z*-1/2; (ii) -*x*, *y*-1/2, -*z*+1/2; (iii) *x*+1, *y*-1, *z*.

Table 2

 π – π stacking interactions (Å, °)

Cg1 and Cg2 are the centroids of the C2–C7 and C9–C14 rings, respectively.

Cg···Cg	centroid-centroid distance	mean interplanar distance ^a	slippage angle ^b
Cg1…Cg1 ⁱ	3.7848 (13)	3.428 (1)	25.1

supplementary materials

Cg1…Cg2 ⁱⁱ	3.8456 (13)	3.567 (1)	22.0
-----------------------	-------------	-----------	------

Symmetry codes: (i) -x, 1-y, -z, (ii) -x, -y, -z. Notes: (a) distance from one plane to the neighbouring centroid; (b) angle subtended by the intercentroid vector to the plane normal. For details, see: Janiak (2000).

Fig. 1

